Fizycy z Uniwersytetu Gdańskiego pracują nad nowymi mechanizmami teoretycznymi, dzięki którym będzie można lepiej scharakteryzować układy złożone z wielu cząstek. Zwiększy to dokładność pomiarów fizycznych, a w przyszłości może pomóc w budowie komputerów kwantowych.
Wyobraźmy sobie, że bawiąc się z kotem, rzucamy piłkę, która odbija się od ściany. W tym momencie piłka i ściana tworzą układ, który - jeśli tylko zechcemy - możemy opisać za pomocą narzędzi fizycznych. Wystarczą nam do tego informacje na temat części składających się na układ: prędkości piłki, sprężystości ściany etc. Z drugiej strony mając dane na temat piłki i ściany, możemy na tej podstawie odtworzyć ich zachowanie.
Czyż nie jest to oczywiste i intuicyjne? Owszem, jest. Ale wszystko to ulega zmianie w momencie, w którym schodzimy do poziomu mikroświata – świata cząstek, atomów - będącego obszarem zainteresowania fizyki kwantowej.
"Jeżeli mamy tutaj analogiczny układ i posiadamy pełną informację zarówno o jednej, jak i o drugiej cząstce - to mimo wszystko nie możemy już powiedzieć, że równocześnie mamy pełną informację o całym układzie" - mówi PAP dr hab. Wiesław Laskowski z Instytutu Fizyki Teoretycznej i Astrofizyki Uniwersytetu Gdańskiego. - "Kwantowe korelacje pomiędzy cząstkami są czymś więcej niż korelacje znane z fizyki klasycznej, opisującej zachowania w makroświecie, znanym z naszego codziennego doświadczenia. Z tego powodu klasyczna teoria nie może tych zjawisk opisać" - dodaje…
Cała rozmowa z prof. Wiesławem Laskowskim z Wydziału Matematyki, Fizyki i Informatyki Uniwersytetu Gdańskiego w serwisie PAP – Nauka w Polsce „Fizycy z UG zwiększają dokładność pomiarów”.