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Below is a discussion of the scientific aim of the above mentioned achievement.



1. DISCUSSION OF THE RESULTS OF THE MONOTHEMATIC SERIES OF
PUBLICATIONS [H1]-[H7]

1.1. Introduction. The subject of works that make up the dissertation has its
source in two currents of research. The first one concerns spaces of local maps
and otopies and the second one is related to looking for new topological invariants
in the class of gradient maps and homotopies.

The idea of studying spaces of partial, local and proper maps comes from [1, 26,
27,33,42]. The paper [1] by A. M. Abd-Allaha and R. Brown from 1980 is the
oldest and most elementary of them. The authors introduced there the space of
partial maps Par(X,Y), where X, YV are topological spaces. This space consists of
continuous maps f: [/ C X — Y defined on open subsets [/ C X and its topology
is a version of compact-open topology adapted to changing domains. Since, as it is
easy to see, the above space is contractible if Y is contractible, not the whole space
but its subsets consisting of local and proper maps have been used in nonlinear
analysis. These subsets are also topological spaces but their topologies are essen-
tially finer than the topology induced from the space of partial maps. Both spaces
owe their usefulness to these topologies.

The space of proper maps appears in the paper [27] by J. C. Becker and D. H.
Gottlieb from 1999. The topology in the set of local maps was introduced in our
paper [21] and then in full generality in [H5]. It should be emphasized that in
[H5] we introduce a generalized definition of a local maps that includes both local
maps in the old sense and proper maps.

However, much earlier than we managed to define the topology in the set of local
maps the notion of a local maps and a very useful generalization of the concept
of homotopy called otopy have been introduced and used in the papers by J. C.
Becker and D. H. Gottlieb ([26]) and D. H. Gottlieb and G. Samaranayake ([42]).
The main advantage of using these notions is that otopy relates local maps with
not necessarily the same domain, because the domain of a map may change along
otopy. What is important is that the topological degree is otopy invariant and otopy
classes appear naturally in many classification results.

The second important inspiration of the works making up the dissertation is
the study of gradient maps and homotopies, in particular, the article [52] by
A. Parusinski from 1990, which is closely related to discoveries made in the pre-
vious decade. Namely, in the middle of eighties E. N. Dancer gave a definition of
a new degree-type invariant for S'-equivariant gradient maps ([32]). Since this
new degree provides more information than the usual degree, one can obtain new
bifurcation results.

In the eighties of the last century Prof. K. Geba posed the following problem: is
there a better invariant for gradient homotopies of gradient maps than the usual
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topological degree? In 1990 A. Parusinski [52] gave the negative answer. Namely,
he proved that if two gradient vector fields on the unit disc D" and nonvanishing
in S"~! are homotopic (have the same degree), then they are gradient homotopic.

It occurs that the problem posed by Prof. K. Geba appears naturally if we con-
sider local maps and their otopy classes. For that reason analysis and comparison
of gradient and usual otopy classes occupies an important place in our research.

It is worth pointing out that independently of Becker and Gottlieb, the similar
notion was also developed by Dancer, Geba and Rybicki in the article [33] from
2005. Understandably, they use different terminology. Local maps are called com-
pact pairs (a pair consists of a map and its domain) and otopies are called homo-
topies of compact pairs. The authors use these notions as tools for proving results
on the classification of equivariant gradient otopy classes.

All papers included in the dissertation concern the space of local maps and their
various subspaces (with the induced topology) consisting of gradient or equivariant
maps. We focus on the study of otopy classes of local maps i.e. path-components
of the above spaces. We also show classifications of various sets of otopy classes
(usual, gradient, equivariant) and natural relations between different sets of otopy
classes.

For the sake of clarity, we will divide our discussion into three parts. In the first
part we focus on the study of the set of gradient otopy classes. The main results
of this part concern the set of gradient local maps in R™ ([H2]), the set of proper
gradient maps in R" ([H3]) and the set of gradient local vector fields on a manifold
([H71). The main topic of the second part is an introduction of the topology in the
set of local maps, which allows us to interpret otopies as paths in the space of local
maps (similarly as for homotopies) and establish the relation between the theory
of otopy and homotopy. In this part we also explain the relation between the space
of proper maps and the space of local maps (in the narrower sense) if we restrict
ourselves to the Euclidean case. In turn in the third part we deal with equivariant
local maps and their otopies. We present here a version of the equivariant degree
theory formulated in the language of otopies ([H1]) and results concerning the
decomposition of the set of equivariant otopy classes with respect to set of orbit
types ([H6]).

Let us mention that problems of that type seems to be quite natural. G. Segal
proves in [58] that inclusions of some function spaces are homotopy (homology)
equivalences. Similar results are contained in papers on configuration spaces by
G. Segal and D. McDuff (see [50,59]). On the other hand M. Gromov in his book
([43]) outlines a program of research on relations between a space of all maps and
its subspaces given by some partial differential relations. Let us note that Schwarz
condition (being such a differential relation) is equivalent to the statement that
a map is gradient.
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1.2. Discussion of the publications [H2], [H3] i [H7]. The mentioned three
articles are closely related. The main result of [H2] is the following version of the
Parusinski theorem: the inclusion of the set of gradient local maps into the set of all
local maps induces a bijection between the respective otopy classes of local maps.
In other words, there is no better invariant in gradient otopy theory than the usual
topological degree.

We expected that the analogous result should hold also for proper maps. The
main advantage of using proper local maps instead of all local maps is that the
space of proper local maps is a “very nice” metrizable space. In fact, it is homeo-
morphic to the space of based continuous maps of the n-sphere into itself. However,
it turns out that the proof of of the Parusinski theorem for proper maps is more dif-
ficult compared to that concerning all local maps presented in [H2]. Although the
main line of the proof is similar in both cases, the case of proper maps requires to
develop some new ideas to overcome many (mainly technical) difficulties.

Finally, the complete proof of the theorem that the inclusion of the space of
proper gradient local maps into the space of all proper local maps induces a bijec-
tion between the sets of connected components of these spaces i.e. the sets of the
respective otopy classes of local maps appeared in [H3].

In [H2] and [H3] we have studied local and proper maps defined on open subsets
of R" and taking values in R", while the main goal of [H7] has been to generalize
the main result of [H2] to the case of an arbitrary Riemannian manifold without
boundary. That generalization is not art for art’s sake, because such a situation that
is the case of gradient local vector fields on manifolds appears in a natural way in
the analysis of equivariant gradient local maps. Namely, let V be an orthogonal
representation of a compact Lie group (G and (2 be an open invariant subset of
V, on which G acts freely. Then there is a natural bijection between the set of
otopy classes of equivariant gradient local maps in 2 and the set of otopy classes
of gradient local vector fields on the manifold €2/G.

To formulate precisely the above results let us introduce the following defini-
tions. A continuous map f: )y — R" is called local if D; is an open subset of R"
and [~'(0) is compact. A local map /[ is called gradient if there is a (''-function
¢: Dy — R such that f = Vi and proper if preimages of compact sets are compact.

Consider the set of all local maps F(n) and its following subsets:

Fv(n) :={f € F(n) | f is gradient }.
P(n) :=={f € F(n) | f is proper }.
Py(n) := Fy(n) N P(n).

Let / = [0,1]. A continuous map h: A — R" is called an otopy if A is an open
subset of 7 x R" and h~'(0) is compact. Given an otopy h we can define for each
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t € lsets Ay ={x e R"| (tx) € A} and maps h,: A, — R" with h(x) = h(t, ).
Observe that /; may be an empty map.

If h is an otopy, we say that h, i h; are otopic. Of course, otopy gives an equiv-
alence relation on JF(n). The set of otopy classes is denoted by F[n|. Observe that
if f is a local map and U is an open subset of D; sych that f~'(0) C U then f and
f| are otopic. In particular, if f~!(0) = () then f is otopic to the empty map.

Apart from usual otopies we will consider otopies that satisfy some additional
conditions, namely

e gradient i.e. h(t,z) = V,x(t,r) for some not necessarily continuous (-
function y such that v, for each t € I,
e proper i.e. h is proper,
e proper gradient.
The sets of the respective otopy classes in Fy(n), P(n), Py(n) will be denoted by
Fvn], Pn], Pvn].

Let us explain now why P(n), as opposite to F(n), has a natural structure of
a metric space. Let ¥" = R"™ U {*} be a one-point compactification of R". It
is a pointed space with the base point *. We write M,X" for the set of pointed
continuous maps from ¥" into ¥". With every map / € M,X" one associates a
proper map f| ;-1g~). Conversely, if f{ € P(n), then the function f7: £* — X"

given by
o= {/(’) ifrxel,

* otherwise
is continuous. It follows that the function p: P(n) — M,X" given by
p(f)=f*
is a bijection. Since M,X" is equipped with the supremum metric, P(n) also has
the metric structure induced by the pullback.

It is easy to see that the inclusion of the respective sets of the maps induce the
following commutative diagram of the respective sets of otopy classes:

Pyln] —— P[n]

Ll

Foln] —— Fn]
The briefest summary of the most important results from [H2] and [H3] can be
formulated as follows.

Theorem 1 ([H2],[H3]). All the functions in the diagram (x) are bijections.
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In [H2] we showed that functions a and b are surjections and ¢ and 0 are bijec-
tions. It is worth pointing out that our result includes a version of the Parusinski
theorem: the function d: Fy[n| — F[n] induced by the inclusion Fy(n) — F(n) is
a bijection. However, our proof makes no appeal to the original proof of Parusinski.
It seems that our proof is simpler as an effect of replacing fixed domain and ho-
motopies by local maps and otopies. The true difficulty in proving Theorem 1 lies
in the following version of the Hopf theorem for gradient local maps (deg denotes
the classical topological degree).

Theorem 2 ([H2]). The function deg: Fy[n] — Z is bijective.

Moreover, only injectivity causes here a problem.

In [H3] we present the essential strengthening of results from [H2]. Namely,
we show that the functions a and b are also bijections. The general scheme of
reasoning is similar in both cases. Also here the main difficulty lies in the proof of
the Hopf type theorem, which says that the function deg: Py(n| — Z is bijective.
However, in the case of proper maps we have encountered a number of techni-
cal difficulties requiring the introduction of new notions and development of new
ideas. Observe that the fact that a is bijective may be treated as a version of the
Parusinski theorem in the class of proper gradient maps.

In [H2] one another class of maps appears, namely proper gradient-like maps.
The main reason for the introduction of this class is that in [H2] we were not able
to prove that the function a is bijective. Because of that we tried to define a class
of maps that is similar to proper gradient, but in which we are able to prove the
Parusinski type theorem. Of course, in light of the results of [H3] this class has lost
its meaning.

We formulate now the main results of [H7]. The above mentioned definitions
of (gradient) local maps and gradient otopies can be generalized to the case of
a (Riemannian) manifold. Assume that A/ is a connected Riemannian manifold
without boundary. Let F[M] (FV[M]) denote the set of (gradient) otopy classes of
(gradient) local vector fields on M and I denote the intersection number. It is easy
to see that the intersection number (similarly as the topological degree) is constant
on the otopy classes.

The main result of [H7] is the following Hopf type theorem.

Theorem 3 ([H71). The function 1: FV[M| — 7Z is bijective.

Observe that the inclusion of the space of gradient local vector fields into the
space of all local vector fields induces well-defined function ®: FV[M]| — F[M].
The following generalization of the Parusinski theorem is an immediate conse-
quence of Theorem 3.

Corollary 4 ([H7]). The function ® is bijective.
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Apart from the mentioned results the paper [H7] contains their application to
studying equivariant local maps, which was the main motivation of the above gen-
eralization.

Assume that V' is a real finite dimensional orthogonal representation of a com-
pact Lie group (7, Q is an open invariant subset of 1/, (i acts freely on ? and
M = Q/G. It is well-known that )/ is a Riemannian manifold.

Let F¢[Q] (F5[92)) denote the set of equivariant (gradient) otopy classes of equi-
variant (gradient) local maps. Precise definitions of these notions from [H7] for-
mulated using topology in the space of local maps introduced in [H4] are here
omitted.

If [/ is an open invariant subset of §2 and ¢: [/ — R is invariant, then ¢ de-
notes the quotient function 7: U//G — R. Let the function ¥: F%[Q] — FV[M] be
given by ¥([Vy]) = [Vg]. We present now to results from [H7] concerning the
equivariant gradient case.

Theorem 5 ([H7]). The function WV is bijective.
The following result is an immediate consequence of Theorems 3 and 5.

Corollary 6 ([H7]). There is a natural bijection
FO =~ 1z,

where the direct sum is taken over the set of all connected components « of the mani-
fold Q/G.

The paper [H7] ends with the remark concerning the difference between the sets
of gradient equivariant and equivariant otopy classes. Namely, in [13] we proved
that there is a bijection F;[Q?2] = }_  Z, with the direct sum taken over all connected
components of M, but only if dim G = 0. If dim G > 0, then the set F[Q] is trivial
i.e. consists of one element. Consequently, the map F ()] — F;[()] induced by the
inclusion is a bijection for dim G = 0, but the sets F[Q)] and F;[(] are essentially
different for dim G > 0. Therefore the analogy with the Parusinski result ([52])
occurs only if dim G = 0.

1.3. Discussion of the publications [H4] and [H5]. The main goal of [H4] is
the introduction of the topology on the set of local maps and the proof of the
exponential law for local and proper maps. Moreover, we show that the inclusion
of the space of proper maps into the space of local maps is a weak homotopy
equivalence if we restrict ourselves to local maps with domains in R"** and ranges
in R™.

In turn, the main result of [H5] says that the above spaces are not homotopy
equivalent for n > 1. The case n = 1 still remains an open problem.
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It is worth pointing out that the first attempt to define the topology in the space
of local maps has been made in [21]. In this paper we also prove the exponential
law and then we use it to describe (up to a homeomorphism) the space of local
maps as a usual mapping space i.e. the space of maps with one fixed domain.

Quick after publishing [21] we have realized that the approach presented in
[21], although logically correct, has two important limitations. First, it turns out
that the class of local maps from [21] may be extended in such a way that it cov-
ers also both partial and proper maps. Moreover, also topology in the space of
local maps (in a new broader sense) can be defined in a way that allows to obtain
spaces of partial (see [1]) and proper (see [H2]) maps as particular (in some sense
extreme) cases of the space of local maps in the generalized sense. That gives
a broader view on otopy theory and allows one to avoid consideration of separate
cases. Secondly, it turns out that a simple reversal (in relation to [21]) of the order
of proving theorems, namely first the description of the space of local maps as the
usual mapping space and then the proof of the exponential law, essentially simpli-
fies proofs, because it allow us to use the standard exponential law i.e. for maps
with one fixed domain. For that reason we have decided to present this new both
generalized (definitions) and simplified (proofs) approach in [H4]. Furthermore,
[H4] contains additional sections concerning otopies in Euclidean spaces.

Let us now turn to necessary definitions and precise formulation of the main
results of [H4] and [H5]. The notation A & B means that A is a compact subset
of B. For topological space X, we denote by 7(X) the topology on X. Recall that
if A, B are topological spaces, then Map(A, B) denotes the set of all continuous
maps of A into B equipped with the usual compact-open topology i.e. having as
subbasis all the sets I'(C.U) = { f € Map(A, B) | f(C) c U}, where C' € A and
U € 7(B). Moreover, for any pointed topological spaces A and B, let Map, (A, B)
be the subspace of Map(A. B) consisting of all base-point preserving maps.

For any topological space X and = ¢ X, let X denote the set X U {x}. Below
we will use different topologies on X. Let R be a family of subsets of X. We
will denote by X the set X with the topology generated by the subbasis § :

T(Y JU{XIU{X\R|RE€ R}. If R = 0, we will abbreviate X to X and if

= {K | K € X}, we will abbreviate X to X*. Observe that if \( is Hausdorff,
then X" is the familiar one-point compactlﬁcatmn

For any topological spaces X and Y, let Par(X,Y') be the set of all continuous
maps [: Dy — Y such that D, is an open subset of X. Elements of Par(X,Y)
are called partial maps. We introduce the compact-open topology in Par(X,Y)
i.e. generated by the sets H(C,U) = { f € Par(X,Y) | C C Dy, f(C) Cc U} for
C' € X and U € 7(Y) as its subbasis. Note that Par(X,Y) is not T, since the only
neighborhood of the empty map is the whole space Par( X, Y).



Let X, Y be any topological spaces and R a family of subsets of Y. We define
Loc(X,Y,R) :={ f € Par(X,Y) | f '(R) € D; forall Re R}.
We introduce a topology in Loc( X, Y, R) generated by the subbasis consisting of all
sets of the form
o [I(C,U):={f€Loc(X,)Y,R)|CC Dy, f(C)cU}forCeXilUe€(Y),
e M(V,R):={fe€Loc(X,Y,R)| fY(R)CV}forVer(X)iReR
Elements of Loc(X,Y,R) will be called local maps. The natural base point of
Loc( X, Y.R) is the empty map.
We can now formulate the main results of [H4]. Let us start with the description
of the space of local maps as the usual mapping space.

Proposition 1 ([H4]). If X is locally compact Hausdorff, then the function
k: Loc(X,Y,R) — Map, (X*,Yy)
given by k(f) := f*, where

* otherwise,

{10t

is a homeomorphism.

Note that Loc(X,Y,R) = Par(X,YV)if R = Qor R = {0}. Inturnif R # 0
and R # {0} then the inclusion Loc(X,Y,R) — Par(X,Y) is continuous, but the
topology on Loc( X, Y, R) is finer than the induced topology.

In what follows we will be especially interested in the case when R = {{y}} with
y € Y. In this case we will write Loc( X, Y, y) omitting double curly brackets.

Recall that a map between topological spaces is called proper if preimages of
compact subsets are compact.

Let X" and Y be topological spaces. Define Prop(X,Y) := Loc(X,VY,X), where
K :={K | K €Y}. Itis easily seen that (as sets)

Prop(X,Y) = {f € Par(X,Y) | f is proper }.
The next result is an immediate consequences of Proposition 1.

Proposition 2 ([H4]). Assume that X is locally compact Hausdorff. Then the func-
tion

k: Prop(X,Y) — Map, (X", Y"),
given by the same formula as in Proposition 1, is a homeomorphism.

We can now formulate the exponential law for local maps.
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Theorem 3 ([H4]). If Z and X are locally compact Hausdorff, then the exponential
function

f: Loc(Z x X.Y,R) — Map, (Z*,Loc(X,Y,R))
given by 6(h) = h*, where h*(t)(x) = h(t,z), is a homeomorphism.

The following consequence of Theorem 3 is especially useful in applications.

Corollary 4 ([H4]). If Z is compact Hausdorff and X is locally compact Hausdorff,
then the exponential function

0: Loc(Z x X,Y,R) — Map (Z, Loc(X,Y,R))
is a homeomorphism.

We will now discuss briefly the results of [H4] and [H5] concerning local maps
in euclidean spaces. Let us introduce the following notation:

F(n, k) := Loc(R™** R",0),
P(n, k) := Prop(R"**, R").

We will abbreviate J(n,0) (resp. P(n,0)) to F(n) (resp. P(n)). Moreover, we will
denote by ¥, (n, k) (resp. P,(n, k)) that component of F(n, k) (resp. P(n, k)) which
contains a (we write 0 for the empty map).

Let Sy = (R"); with R = {{0}}. Observe that, by Proposition 1, there are
natural homeomorphisms

Pl k) = OFE(E") and F(n k) =00 (8.
In particular, P(n) =~ Q"(S™) and F(n) ~ Q"(Sg).
Relation between local and proper maps in Euclidean spaces is explained in the

following two theorems. The first one has been proved in [H4] and the second
[H5].

Theorem 5 ([H4]). The inclusion P(n, k) — F(n, k) is a weak homotopy equiva-
lence.

Theorem 6 ([H5]). If n > 1 and k > 0 then the spaces Py(n, k) and Fy(n. k) are not
homotopy equivalent.

Topology in the space of local maps and the exponential law allows us to for-
mulate clearly the basics of otopy theory in the euclidean case, which is a part of
[H4].

Let I = [0,1]. Any element of Loc(I x R""* R" 0) is called an otopy and any
element of Prop(/ x R™"** R") is called a proper otopy. By the exponential law for
local maps, each (proper) otopy corresponds to a path in F(n. k) (P(n, k)) and vice
versa.
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Given a (proper) otopy h: {2 — R" we can define for each ( € [ sets (), = {z €
R | (z,t) € Q} and maps h;: ; — R" with h(z) = h(z,t). If h is a (proper)
otopy, we say that hy and h, are (proper) otopic. Of course, (proper) otopy gives
an equivalence relation on F(n, k) (P(n, k)). The set of (proper) otopy classes will
be denoted by F(n, k] (P[n, k]).

The following fact is crucial in the proof of Theorem 5.

Proposition 7 ([H4]). The function P(n, k| — F[n, k| induced by the inclusion is a
bijection.

By the exponential law, we obtain the following canonical isomorphisms:
Pin, k +m] = 7y (Po(n, k) = Tmsn(S™),
Fin, k +m| = 7 (Fo(n, k) = i (Sy)
for m > 0.

1.4. Discussion of the publications [H1] and [H6]. In [H1] and [H6] we study
sets of equivariant (usual and gradient) otopy classes of local maps in the case of
a real finite dimensional orthogonal representation of a compact Lie group . The
article [H1] is the oldest in a series of publications constituting the dissertation and
was published in 2010. The main aim of [H1] is presentation of some extensions
of the topological degree to equivariant local maps both in the gradient and non-
gradient case and explain the relation between these two generalizations.

In turn, in [H6] we introduce the space of equivariant local maps and study their
basic propreties. In particular, we present the full proof of the splitting theorem for
the set of otopy classes of such maps in the case of a representation of a compact
Lie group.

We will give now the precise formulation of the main results of [H1] and [H6].
Let (G be a compact Lie group. Any subgroup H of (7 is understood to be closed
and (H) stands for conjugacy class of H. We denote by N H the normalizer of H
in G and by W H the associated quotient group N H/H called the Weyl group. The
following notation will also be used:

®(G) ={(H) \ H is a closed subgroup of G },

Ou(G) = { (H) € ®(G) | dmWH =k},
®.5(G)={(H) € f1>,, (G) | WH is biorientable },
$,.,(G) ={(H) € ®x(G) | WH is not biorientable }.
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The free abelian group [/((;) generated by ®((;) admits a natural ring structure
described by T. tom Dieck in [61] and is called the Euler ring. Its subgroup A(G)
generated by @,((7) with multiplication defined in a similar manner is called the
Burnside ring. The natural projection

v U(G) — A(G)

is a group homomorphism that in general does not preserve the ring structure.
Finally, we define

AG)= Pz @ Pz fork=01... dimG.

(H)e® p(G) (H)EDP) o (G)

Let V be a real orthogonal representation of a compact Lie group ¢+ and R* denotes
a trivial representation of (7. A local map on V < RF is a pair (f, ) consisting of
an open invariant [/ C V @ R* and an equivariant continuous map f: [/ — V such
that f~1(0) is compact. Denote by F(V & RF) the set of all local maps on V = R
An otopy on V & RF is a pair (h, ) consisting of an open invariant Q C (V& RF) x [
and an equivariant continuous map % : {2 — V such that »~!(0) is compact. Denote
by O(V @& RF) the set of all otopies on V @ R*. In a special case k = 0 we say
that (f.U/) € F(V) is a gradient local map if there is an invariant (' function
p: U — R such that [/ = V. Similarly, we say that (h,Q) € O(V) is a gradient
otopy if there is an invariant C'' function ¢': 2 — R such that h(x,{) = Vi (x),
where vy (x) = ¥(z.t). We denote by FV (V) the subset of F(V') consisting of all
gradient local maps and by OV (V') the subset of O(V') consisting of all gradient
otopies. Given (h,Q) € O(V @ R*) and t € [0.1] let (h,Q), := (h;.5%). where
O = {z € VaR(xt) € Q} and h(x) = h(z,t). We say that (h,Q) is an otopy
from (ho. QU) to (h,l. f?])
Let us formulate two main results of [H1].

Theorem 1 ([H1]). There exist two functions:
(a) deg assigning to each (f,U) € F(V') an element deg.(f,U) € A(G);
(u) degg assigning to each ([.U) € F¥(V') an element degp( /) e U((C
These functions have the following properties.
(1) «(degg(f.U)) = degg(f.U) for (f.U) € :v'vm.
(2) (a) degg(ho, ) = deg( (h1, Q) for (h,Q) € O(V),
(u) degg(ho, %) = degg(hy, ) for (h,Q) € OV (V).
(3) Suppose U/; N Uy = (). Then
@) if (f1,Uh), (f2, Us) € F(V), then

degg(fi U fo, Uy UUy) = degg(fi, Uy) + deg(f2, Us).

7).
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@) if (J1, Uh), (Ja, Us) € FY(V), then
degg(fl U fQ: (Il U UQ) == degg(flz (Jl) + degg(f'za br?)s

where (f1 U f2)(z) = fi(z) for z € Uy and (f1 U f2)(z) = fa(x) for z € Us.
(4) Let f: U — V be C'. Suppose that f~'(0) = Ga for some a € U and
Df(a)(v) = vforall v € (T,(Ga))*. Then
(a)
" T T Ga ) [f Ga E(I)D G)
degc(f,b) = { g} ) if EGﬂg §E (I’OEG)_-
(w)
degy;(f,U) = (Ga).
Theorem 2 ([H1]). There exists a function deg}, assigning to each (f,U) € F(V &
R¥) an element degl.(f,U) € A,(G) such that
(1) degk(ho, Q) = deghi(hy, ) for (h,Q) € O(V @ R¥).
(2) If(fl Ul), (fg, UQ) eFVa Rk) and Uy N Us = ) then

degt(fi U fo, Uy U U,) = degh(f1, U1) + degl(f, Un),

where (f} u fQ)(.’L) = fl(:r)for.r € brl and (fl L fg){l) = fQ(SC)fOT'SE S []2
(3) Let f: U — V be C'. Suppose that [~'(0) = Ga for some a € U and
Df(a)(v) = v forall v € (T,(Ga))*. Then
_J (Ga), ¥ (G.) € B(G),
degs(/,V) = { 0, i (Ga) & (),

We will present now main results of [H6]. Let us start with some notation.
Assume V' is a real finite dimensional orthogonal representation of a compact Lie
group GG and H is a closed subgroup of (. Recall that G, = {g € G | gz = z}, (H)
stands for a conjugacy class of H and WH = NH/H, where N H is a normalizer of
H in G. Let € be an open invariant subset of V. We define the following subsets of
Q:

M ={ze Q| HCG),
Oy ={zeQ|H=0G,}
Q) ={z € X [ (H) = (Ga)}-
Let
$(G) ={(H) | H is a closed subgroup of G},
Tso(©) = {(H) € ®(G) | Uu) # 0}

The set Iso((?) is partially ordered. Namely, (H) < (K) if H is conjugate to a
subgroup of K. Below we will make use of the following well-known facts:
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Iso(€2) is finite,
W H is a compact Lie group,
V*# is a linear subspace of V and orthogonal representation of 1V I/,
the action of W H on 1y is free,
2y is open and dense in Q¥
e () is a G-invariant submanifold of Q,
(] Q(H) = G.QH and QH is closed in Q(H),
e if (/) is maximal in Iso((2) then ) is closed in (2.

Recall that if X, Y are topological spaces and R is a family of subsets of ¥ then
Loc(X,Y.R) (Prop(X,Y)) denotes the space of (proper) local maps introduced in
[H4]. Due to [H4] we were able to formulate clearly the basics of otopy theory in
the equivariant case. Namely, assume X, Y are (:-spaces. Let Locg (X, Y. R) (resp.
Propg;(X,Y)) be the subspace of Loc(X,Y,R) (resp. Prop(X,Y’)) consisting of
equivariant maps with invariant domains and equipped with the induced topology.

Let 2 be an open invariant subset of R* & V. Let us introduce the following
notation:

Fe() := Locg (92, V,0),
Pz () := Propgs (2, V).

Let / = [0.1]. We assume that the action of (7 on [ is trivial. Any element of
Locg(I x ©,V,0) is called an otopy and any element of Prop. (I x 2.V is called a
proper otopy.

Given a (proper) otopy h: A C I x 2 — V we can define for each | € I sets
Ay ={z € Q| (t.z) € A} and maps h,: A; — V with h;(z) = h(t, z). Note that from
the above h, may be the empty map. If h is a (proper) otopy, we say that i, and
h, are (proper) otopic. Of course, (proper) otopy gives an equivalence relation on
F(22) (Pe(©2)). The set of (proper) otopy classes will be denoted by F;[Q] (P [2]).

At the beginning of [H6] we formulate the following results concerning the sets
of equivariant otopy classes.

Theorem 3 ([H6]). The function P[] — F;[?] induced by the inclusion is a bijec-
tion.

Theorem 4 ([H6]). The inclusion P;(Q)) — F(Q) is a weak homotopy equivalence.

Theorem 5 ([H6]). If dim G > 0, Q is an open invariant subset of V and G acts
freely on Q then the set F;[)] has a single element.

The next main goal of [H6] was to show that, under the assumption that (/)
is maximal in Iso((2), there is a natural bijection between the sets F[{)] and
Fwn [Qu] x Fo [\ Quy]. The naive approach suggests to define this bijection
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simply by taking the otopy classes of the respective restrictions i.e. by the formula

1 ([ oseen] s [T o))

Unfortunately, f| p A\, does need not to be a local (G-map. For this reason, we
first have to perturbate the map f within its otopy class so that the restriction of
the perturbation to the set /); \ ;) would be a local G-map. Roughly speaking,
our perturbation does not change f on (2, and separates zeros of maximal orbit
type, which lie on Qy), from all other zeros of f. The precise definition of this
bijection from [H6] will be omitted here, since it requires much more additional
notation and definitions. However, let us formulate the result.

Theorem 6 ([H6]). If (H) is maximal in Iso(2) then there is a natural bijection
O: ?G{Q} — g_WH [QH] X Btc; [Q \ Q(}]):|.

The paper ends [H6] with a series of splitting results, which are consequences
of Theorem 6. Assume V is a real finite dimensional orthogonal representation
of a compact Lie group GG and ) is an open invariant subset of R* & V. Let
Isop(2) := {(H) € Iso(Q) | dimWH < k}. It is well-known that the set Iso((2)
is finite and so is Isox(€2). Let us denote by S**V and SV representation spheres
i.e. one-point compactifications of representations R* &>V and V, respectively. The
set of G-homotopy classes of such maps will be denoted by [S$*+V: 5V]z.. Recall
that if X, " are G-spaces and A (resp. B) is a G-subspace of X (resp. Y) then the
set of relative (;-homotopy classes of (;-maps from (X, A) to (V. B) is denoted by
[X, A;Y, Blg. The sets of (proper) otopy classes of equivariant (proper) local maps
can be identified with the sets of path-components of the spaces of equivariant
(proper) local maps.

Theorem 7 ([H6]). There are natural bijections

(1) 3@[9} ~ Hgi'i’H [QH] )
(H)
(2) PelQ ~ [ Pwa Q4]
(H)
k+V, oV]* k+VH - altVH k 7N gV
3) (5558 = [T [+, 84V \ (R* x Vig); 8 ,*]WH,

(H)
where the products are taken over the set Isog ().

It should be emphasized that the main difficulty in proving Theorem 7 lies in The-
orem 6.
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Recall that the extreme case of the trivial action is covered by [H2] and [H4].
Namely, if G acts trivially on V" and (2 is an open subset of 1/, then

Fol] = Fal = > Z,

where the direct sum is taken over all connected components « of the set (2. Simi-
larly, if (7 acts trivially on R"**, then

EFG [R?H—k] = gr{f:} [R”-H\‘] ~ 7‘_1i+k'(‘qn)‘

A more thorough description of F[(}] based on the formula (1) and the detailed
analysis of the factors Fy y [2y] is given in [13], which continues and develops the
approach presented in [H6].

2. DISCUSSION OF OTHER SCIENTIFIC ACHIEVEMENTS

2.1. Papers from Conley Index Theory. Two papers preceding the Ph.D. disser-
tation ([14, 15]), the Ph.D. dissertation ([6]) and five papers published after it
([7-10,12]) are devoted to the Conley index theory.

One of the main ideas behind the Conley index theory is to apply the tools from
algebraic topology in studying dynamical systems, especially the structure of in-
variant sets (see [29, 30,49,57]). This approach, motivated by Morse theory, fo-
cuses on decomposing isolated invariant sets into invariant subsets (Morse sets)
and connecting orbits between them. This structure is called a Morse decomposi-
tion of an isolated invariant set. A filtration of index pairs associated with a Morse
decomposition can be used to find connections between different Morse sets. The
principal tools for this purpose are connection matrices (see [9, 10, 38, 54]), con-
nection graphs (see [8,37]) and spectral sequences (see [7,10,31]).

The papers [14, 15] concern the connection matrix theory for discrete dynam-
ical systems. The main goal of [14] is the proof of existence of index filtrations.
Existence of such filtrations in the case of continuous dynamical systems (flows)
has been proved in [30] and [57]. In [14] we present the proof in the discrete
case when a dynamical system given by a homeomorphism of a locally compact
metric space. In turn in [15] we carry over to the discrete case the construction of
the connection matrix modifying the construction for flows from [38]. The main
difference is that in the discrete case the homology Conley index is not simply the
homology of the index pair but the Leray reduction of its homology. The papers
[14,15] have mainly the technical character and are preparation for the Ph.D. dis-
sertation ([6]).

The paper [8] contains a generalized version of the main result of the Ph.D.
dissertation i.e. theorem on existence of connection graphs. In the dissertation we
prove it in the case of flows and in [8] we provide a parallel proof for both flows
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and homeomorphisms. Although the main line of the proof remains the same,
some parts of the proof (mainly in the algebraic aspects) are presented in a new
more clarified form. Moreover, [8] is extended by a series of examples illustrating
obtained results.

In [7] we define spectral sequences associated with Morse decompositions of
a compact metric space. We prove the existence and uniqueness of such spectral
sequences for continuous dynamical systems.

The paper [9], similarly to [14,15], concerns the theory of connection matrices.
Recall that connection matrices can be seen as algebraic representations of the
dynamical system and they express the relationship between certain (co)homology
groups. Since the classical definition of the connection matrix is quite complicated,
in [9] we introduce so called simple connection matrices, which are the simplest
possible version of these algebraic tools and prove existence of such matrices for
Morse decompositions of a compact metric space. This way we maintain the basic
idea and avoid many technical details, which blur the overall picture.

The articles [10,12] are the most mature works in a series devoted to the Conley
index theory. In [10] we study the relation between spectral sequences and con-
nection matrices. Recall that both spectral sequences and connection matrices are
a generalization of exact sequences. The idea of the connection matrix was due to
Charles Conley and the connection matrix theory was developed by his students.
In [10] we introduce detailed connection matrices for filtered differential vector
spaces. A filtered differential vector space is a finite increasing filtration of a given
vector space together with an endomorphism d such that ¢> = (0 and d preserves the
filtration. Roughly speaking, a detailed connection matrix is a bigraded subspace
of the filtered differential vector space which provides information on some homol-
ogy groups associated with the filtered differential vector space. It is well known
that similar information is contained in spectral sequences. Therefore, the main
goal of [10] is to establish the clear and purely algebraic relation between detailed
connection matrices and spectral sequences. More precisely, we prove that for a
given filtered differential vector space there exist a detailed connection matrix that
fully reconstructs its spectral sequence. The paper contains also some examples
illustrating possible applications of the theory to dynamical systems.

The main goal of [12] is to explain and clarify the basic relations between con-
nection matrices (generalized here to spectral splittings), connection graphs (called
here spectral graphs) and spectral sequences. Although the comparison is done
mainly on algebraic level, it sheds some new light on important aspects of the Con-
ley index theory. This paper is also intended as a brief survey summarizing results
from [7-10].
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2.2. Papers thematically similar to the series [H1]-[H7]. Several papers not
included in the dissertation cover topics similar to that presented in [H1]-[H7].
It concerns the articles [19, 20] devoted to gradient vector fields on the two di-
mensional disc and the article [21], in which we introduce a first version of the
definition of the topology in the set of local maps.

The papers [19, 20] address issues related to the Parusinski theorem ([52]).
Recall that the Parusinski theorem can be formulated in the following way: the
inclusion of the space of gradient vector fields in the space of all vector fields on D"
non-vanishing in S"~! induces the bijection between the sets of path-components
of these function spaces.

In [19] we strengthen the mentioned result for n = 2 via showing that the above
inclusion is a homotopy equivalence (both spaces are homotopy equivalent to S*).
Precisely, this was partially proved in [52] using the argument of deformation re-
traction, but this method fails (at least in that form) in the case of the identity
component. For that reason we have investigated in [19] this more difficult case.

In turn [20] contains a new proof of the Parusinski theorem in the case of the
plane (n = 2). In our approach we wanted to emphasize strongly the geometric
aspects of the proof. This approach was continued in [19]. Moreover, in [20] we
filled a small gap in the original proof from [52].

The paper [21] has been discussed together with [H4]. Recall that the main
aim of [21] was to introduce such a topology on the set of local maps in which
otopies correspond to paths in this mapping space. Namely, we proved a version
of the exponential law which establishes the homeomorphism between the space
of otopies and the space of paths of local maps. The important point to note here
is that the above-mentioned topology is essentially finer than the topology induced
from the space of all partial maps.
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